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ABSTRACT

Stellar streams form through the tidal disruption of satellite galaxies or globular clusters orbiting a

host galaxy. Globular cluster streams are of particular interest since they are thin (dynamically cold)

and therefore sensitive to perturbations from low-mass subhalos. Since the subhalo mass function differs

depending on the dark matter composition, these gaps can provide unique constraints on dark matter

models. However, current samples are limited to the Milky Way. With its large field of view, deep

imaging sensitivity, and high angular resolution, the upcoming Nancy Grace Roman Space Telescope

(Roman); presents a unique opportunity to significantly increase the number of observed streams and

gaps. This paper presents a first exploration of the prospects for detecting gaps in streams in M31

and other nearby galaxies with resolved stars. We simulate the formation of gaps in a Palomar-5-like

stream and generate mock observations of these gaps together with background stars in M31 and

foreground Milky Way stellar fields. We assess Roman’s ability to detect gaps out to 10 Mpc through

visual inspection and with the gap-finding tool FindTheGap. We conclude that gaps of ≈ 1.5 kpc in

streams that are created from subhalos of masses ≥ 5 × 106 M� are detectable within a 2–3 Mpc

volume in exposures of 1000s–1 hour. This volume contains ≈ 200 galaxies. Large samples of stream

gaps in external galaxies will open up a new era of statistical analyses of gap characteristics in stellar

streams and help constrain dark matter models.

1. INTRODUCTION

Large-scale cosmological simulations with cold dark

matter (ΛCDM) predict hierarchical formation of dark

matter halos and the existence of substructure at all

scales (White & Rees 1978; Blumenthal et al. 1984; Bul-

lock et al. 2001; Springel et al. 2008; Fiacconi et al.

2016). To test ΛCDM predictions at small scales, previ-

ous studies have uncovered satellite galaxies around the

Milky Way and dwarf galaxies in the local group with

stellar masses down to 103 M�(Willman et al. 2005; Si-

mon & Geha 2007; Martin et al. 2008; Koposov et al.

2009; Willman et al. 2011; McConnachie 2012; Bech-

tol et al. 2015; Drlica-Wagner et al. 2015; Geha et al.

∗ NASA Hubble Fellow

2017; Mao et al. 2021). However, in ΛCDM models,

galaxies with halos of masses . 108M� are more domi-

nated by dark matter compared to higher-mass galaxies,

which makes their detection difficult (Efstathiou 1992;

Okamoto et al. 2008; Bullock et al. 2000; Sawala et al.

2016). Other dark matter models differ from ΛCDM

in their predictions for the masses and number densi-

ties of dark matter subhalos (subhalo mass functions).

For instance, warm dark matter models (WDM, Bode

et al. 2001) predict a similar hierarchical collapse at large

scales, but this collapse is strongly suppressed at lower

masses (. 109M�, depending on particle mass), result-

ing in a smaller fraction of low-mass subhalos (Bose et al.

2017). Similarly, some fuzzy cold dark matter mod-

els (Hu et al. 2000; Hui et al. 2017), predict a sharp

cutoff at low masses (≤ 107M�). Self-interacting dark
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matter (SIDM) models produce halos with pronounced

cores with different tidal evolution, masses and densities

compared to CDM halos (Spergel & Steinhardt 2000;

Rocha et al. 2013; Tulin & Yu 2018; Glennon et al. 2022;

Forouhar Moreno et al. 2022). Even in ΛCDM simula-

tions, the survival and the properties of low-mass sub-

halos within a larger halo are poorly understood. The

tidal field of the central galaxy, pre-existing substruc-

ture in the halo, and deviations from a smooth spherical

halo density profile can all affect the tidal evolution of

accreted subhalos (Garrison-Kimmel et al. 2017). On

the other hand, analytical calculations, N-body simu-

lations and high-resolution hydrodynamical simulations

show that the central cores of subhalos are likely to sur-

vive for long periods of time, or even indefinitely (van

den Bosch et al. 2018; van den Bosch & Ogiya 2018;

Errani & Peñarrubia 2020).

All of these differences between different dark matter

models can, in principle, be tested by statistical sur-

veys of nearby low-mass subhalos. The key challenge

is how to detect these invisible dark subhalos. Strong

gravitational lensing offers an opportunity to validate

predictions of dark matter models (Dalal & Kochanek

2002; Amara et al. 2006; Nierenberg et al. 2014; Hezaveh

et al. 2016; Nierenberg et al. 2017; Gilman et al. 2019).

However, this technique probes all subhalos along the

line of sight up to the lensed luminous source, which

complicates the inference of dark matter properties.

Globular cluster (GC) streams provide a complemen-

tary approach for detecting and measuring the spectrum

of low-mass subhalos in the local volume (Johnston et al.

2002; Yoon et al. 2011; Bovy 2016; Bovy et al. 2017). As

GCs orbit the host galaxy, internal evolution and tidal

stripping leads to the escape of stars from the central

cluster, forming thin, elongated stellar streams which

persist for billions of years (Johnston 1998; Helmi &

White 1999). These streams can subsequently be per-

turbed by a free-floating dark matter subhalo, which can

create a gap-like feature inside the stream (Yoon et al.

2011). Numerical and analytical calculations predict the

morphology and frequency of these features in various

types of GC streams (Yoon et al. 2011; Carlberg 2012;

Erkal et al. 2016; Sanderson et al. 2016; Koppelman &

Helmi 2021).

Photometric and spectroscopic surveys have identi-

fied and characterized ≈100 stellar streams in the Milky

Way, with the majority being globular cluster streams

(Odenkirchen et al. 2001; Newberg et al. 2002; Majewski

et al. 2003; Odenkirchen et al. 2009; Newberg et al. 2009;

Grillmair & Carlin 2016; Shipp et al. 2018; Mateu et al.

2018; Ibata et al. 2019; Li et al. 2022; Martin et al. 2022;

Mateu 2023). A few of these GC streams show evidence

of gap-like features that are predicted in numerical simu-

lations of dark matter subhalo encounters (de Boer et al.

2018, 2020; Bonaca et al. 2020; Tavangar et al. 2022). In

particular, Price-Whelan & Bonaca (2018) identified a

spur and a gap in GD-1, which Bonaca et al. (2019) at-

tributed to a likely encounter with a 106–107 dark mat-

ter subhalo ∼8 Gyr ago, after ruling out other types of

perturbers.

Gaps in GC streams can be created through other pro-

cesses, however. Previous studies have shown that bary-

onic matter perturbers (galactic bars, molecular clouds,

black holes, spiral arms) can create similar features in

GC streams (Amorisco et al. 2016; Hattori et al. 2016;

Price-Whelan et al. 2016; Erkal et al. 2017; Pearson et al.

2017; Banik & Bovy 2019; Bonaca et al. 2020), which

makes gaps difficult to decipher, even when they are de-

tected. Moreover, since these streams have intrinsically

low surface brightnesses, the detection of gaps has been

limited to the Milky Way, which has resulted in rela-

tively small samples.

Detecting gaps in globular cluster streams in exter-

nal galaxies offers a new window into testing dark mat-

ter models by increasing the number and diversity of

stream gaps. Previous studies have observed streams in

external galaxies arising from tidally-disrupted satellites

(Mart́ınez-Delgado et al. 2010; Martinez-Delgado et al.

2021). While several candidate GC streams have been

proposed in M31 (Pearson et al. 2022), these candidate

detections require more sensitive and higher resolution

data to be confirmed, and to eventually map both the

streams and gap structures.

The upcoming Nancy Grace Roman Space Telescope

(Spergel et al. 2015) will have a large field of view, high

angular resolution and deep-imaging sensitivity. Pear-

son et al. (2019, 2022) demonstrated how this combina-

tion allows the detection of very low-surface brightness

GC streams out to a couple of Mpcs. In this work,

we examine the plausibility of detecting gaps in Pal

5-like GCs formed from interactions with dark matter

subhalos by extending the predictions of Pearson et al.

(2019). The paper is arranged as follows: Section 2 de-

scribes our methodology for simulating isolated, evolv-

ing streams with gaps; Section 3 discusses our simula-

tions of mock observations with Roman including fore-

ground and background star fields; and the feasibility

of visual inspection to confirm gaps in simulated star

count data. Section 4 discusses the application of an

automatic gap-finding pipeline, FindTheGap (Contardo

et al. 2022), to find gaps in simulated data. Section 5

discusses the implications and limitations of this work.

We summarize our findings in Section 6.
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2. SIMULATING GLOBULAR CLUSTER

STREAMS WITH GAPS

Our goal is to simulate observations of gaps in GC

streams, starting with the Palomar 5 stream (hereafter,

Pal 5; Odenkirchen et al. 2001, 2003) as a test case,

defined to have a present-day mass of 104 M� (Ibata

et al. 2017). Our work closely followed a similar method-

ology as Pearson et al. (2019), with additional modi-

fications that are described herein. We conducted all

numerical calculations with the gala package (Price-

Whelan 2017), which implements numerical integration

techniques to model the orbits of stars in a pre-specified

static potential.

2.1. Gravitational Potentials

In our analysis, we used M31 as the external host

galaxy. Many groups have estimated the total mass

and the potential of M31 by modeling the kinematics

of satellites (Watkins et al. 2010); constraining the rota-

tion curve (Chemin et al. 2009); modeling the velocity

distributions using tracer particles such as stars, globu-

lar clusters, and planetary nebulae (Kafle et al. 2018);

dynamical modeling of the giant southern stream (GSS)

in M31 (Fardal et al. 2013); and the local group tim-

ing argument (González et al. 2014; Chamberlain et al.

2022). Additional references and trade-offs from these

techniques are summarized by Fardal et al. (2013) and

Kafle et al. (2018).

To set up an M31-like potential, we used the model by

Kafle et al. (2018) composed of a central bulge, a disk,

and a halo. The bulge potential follows a Hernquist

profile (Hernquist 1990) given by:

Φb(r) = −GMb

r + q
(1)

with a scale length (q) of 0.7 kpc and a bulge mass( Mb)

of 3.4×1010 M�. The disk potential follows a Miyamoto-

Nagai density profile (Miyamoto & Nagai 1975) given

by:

Φd(R, z) = − GMd(
R2 +

(
a+ (z2 + b2)

1
2

)2)1/2
(2)

with a scale length (a) of 6.5 kpc, a scale height (b) of

0.26 kpc and a total disk mass (Md) of 6.9 ×1010M�.

These parameters for the disk and the bulge were

adopted from a compilation of literature values (Bekki

et al. 2001; Font et al. 2006; Geehan et al. 2006; Seigar

et al. 2008; Chemin et al. 2009; Corbelli et al. 2010;

Tamm et al. 2012). We assumed a Navarro-Frenk-White

(NFW) profile (Navarro et al. 1996) for the halo given

by:

Φh(r) = −G Mvir ln(1 + r c/rvir)

g(c) r
, (3)

with g(c) = ln(1 + c)− c/(1 + c), (4)

Mvir =
4π

3
r3vir∆ρc, (5)

and ρc =
3H2

0

8πG
(6)

Where Mvir is the virial mass, rvir is the virial ra-

dius, c is the concentration parameter, ∆ is the virial

overdensity parameter and ρc is the critical density of

the universe. As many of these parameters are interre-

lated, we used best-fit values for the halo virial mass at

∆ = 200 of M200 = 0.7 × 1012M�, and log c = 1.5

based on the inferred posterior distribution by Kafle

et al. (2018). We note that the concentration parameter

was poorly constrained in this work. We also assumed

H0 = 67.7 km/(Mpc s) based on Planck results (Planck

Collaboration et al. 2020).

For the dark matter subhalo, we again assumed a

Hernquist density profile with masses (Mh) and radii

(rh) determined by the scaling relation from Erkal et al.

(2016):

rh = 1005 pc×
(

Mh

108M�

)0.5

. (7)

2.2. Stream Progenitor Coordinates

As there are no currently-known globular clus-

ter streams in M31, we used a Pal 5-like stream

as an example. In the Milky Way, the Cartesian

Galactocentric coordinates of Pal 5 are (X,Y, Z) =

(6.1 kpc, 0.2 kpc, 14.7 kpc) and (VX , VY , VZ) =

(−49.7 km/s,−119.4 km/s,−11.4 km/s) (Price-Whelan

et al. 2019; Vasiliev 2019)1. Our goal is to test the ob-

servability of gaps in streams located at various loca-

tions in galactic halos, hence, we also simulated streams

to galactocentric radii of 35 kpc and 55 kpc. For sim-

plicity, to simulate equivalent streams at 35 kpc and

55 kpc, we used positions that give approximately the

desired Galactocentric radii, and we assumed that the

velocities of the stream at 35 kpc and 55 kpc were the

same as the velocity at 15 kpc. We used the same ve-

locities (VX , VY , VZ) for all streams, but we note that

1 We assumed that our GC progenitor lies at the present-day he-
liocentric equatorial coordinates of Pal 5, (α, δ) = (229.◦022,
−0.◦112) at a distance of 22.5 kpc; and has a proper motion vector
(µα cos δ, µδ) = (−2.736 mas/yr, −2.646 mas/yr) and radial ve-
locity of −58.60 km/s. We assumed a galactocentric coordinate

system with the local standard of rest velocity ~Vlsr = (8.4 km/s,
251.8 km/s, 8.4 km/s) and the Sun radial distance of 8.275 kpc
from the Galactic center based on (Schönrich et al. 2010; Bovy
et al. 2012; GRAVITY Collaboration et al. 2019).
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this process results in different orbits compared to the

stream at 15 kpc. These coordinates, along with addi-

tional parameters of our simulations are all summarized

in Tables 1 and 2.

2.3. Generating a Gap in the Stream

We generated model streams using the “particle-

spray” method described by Fardal et al. (2015) and im-

plemented in gala. We assumed a uniform mass loss his-

tory and a progenitor mass (mp) of 5×104 M� based on

Bonaca et al. (2020). We simulated the direct impact of

a dark matter subhalo and a stream using gala; specifi-

cally, the function MockStreamGenerator which models

the orbits of stars influenced by a massive body within

an external potential. Throughout these calculations,

individual stream stars were treated as non-interacting

massless particles, and we did not include the stream’s

progenitor potential.

To ensure a direct impact between stream and sub-

halo, we first needed to determine the initial coordinates

of both components given their positions and velocities

at the moment of collision. We backward-integrated the

present-day coordinates of the stream progenitor to a

time t1, initiated a stream at these coordinates, and then

forward-integrated by ∆t2. At this point, the collision

position was assumed to be at a position ∆x away from

the progenitor position. We adjusted the coordinates of

the subhalo to achieve a fixed relative velocity (| ~Vrel|)
between the stream stars and the subhalo perpendicular

to the impact location. After we determined the posi-

tion and velocity of the subhalo at the collision point,

we backward-integrated its orbit by ∆t2 again to set the

subhalo’s initial conditions.

With the initial positions and velocities of the stream

and subhalo determined, we forward-integrated the sys-

tem for ∆t2, computing the stream particle/subhalo in-

teraction using the gala DirectNBody routine, with an

additional ∆t3 time period to allow the subhalo to pass

completely through the stream. At this point, we re-

moved the subhalo from the simulation to avoid po-

tential multiple interactions, allowing for a more di-

rect analysis of the observability of well-defined gaps in

streams. We then forward-integrated the stream stars

for the remaining t1−(∆t2+∆t3) to observe the growth

of the gap over time.

These timescales (t1,∆t2 and ∆t3) were chosen to al-

low the stream to have similar lengths as that of Pal

5 in M31 (7–12 kpc at RGC=15–55 kpc, based on esti-

mates by Pearson et al. 2019). Additionally, after the

subhalo encounter, we continued releasing stars into the

mock stream to ensure that there isn’t a gap at the loca-

tion of the progenitor. We later re-sampled the stream

to match the number of stars observed in Pal 5 in the

Milky Way based on Bonaca et al. (2020). Table 2 sum-

marizes all parameters for streams at 15 kpc, 35 kpc and

55 kpc.

2.4. Quantifying the Size of the Simulated Gap

To estimate the size of the simulated gap, we fit a

Gaussian near the visually-identifiable gap. To account

for the density variation along the stream and the de-

crease in density near the wings of the stream, we mea-

sured both the density ratio and the density difference

between the perturbed stream (with a gap) and an

equivalent unperturbed stream. By averaging the full

width at half maximum of the Gaussian fits to both the

density ratios and density difference, we obtained gap

sizes of 1.4 kpc, 1.8 kpc, and 1.8 kpc, at RGC= 15 kpc,

35 kpc and 55 kpc, respectively for subhalo masses of

5 × 106 M�. We note that in our stream integration

procedure, the orbits of the stream and the subhalo, the

total integration times, and the impact velocities were

chosen to achieve the desired lengths (7–12 kpc) of the

stream and to obtain approximately the same gap sizes

at all galactocentric values.

Figure 1 depicts three simulated Pal 5-like streams at

RGC= 15 kpc with gaps induced by dark matter subha-

los with masses of 2× 106M�, 5× 106M�, and 107M�.

The size of the gap increases with the mass of the sub-

halo, as previously shown by analytical and numerical

simulations (Yoon et al. 2011; Erkal & Belokurov 2015).

Our results are consistent with numerical simulations

by Yoon et al. (2011), who found that gaps induced by

105– 107.5M� subhalos can be visually identified in Pal
5-like streams, although they used a higher relative im-

pact velocity (>100 km/s), a single galactocentric radius

(RGC≈ 25 kpc) and a longer integration times after the

impact (≈ 4.34 Gyr). In their simulations, they found

that subhalo masses ≥ 106 M� induce gaps with phys-

ical sizes of ≈ 1 kpc (visually), comparable to the ob-

served gaps in our simulations. However, we note that

even when using similar impact parameters and inte-

gration times, centrally-concentrated halo profiles (e.g

NFW profiles) will result in larger gaps (Sanders et al.

2016).

3. GENERATING MOCK OBSERVATIONS OF

STREAMS WITH GAPS IN M31 AND OTHER

EXTERNAL GALAXIES

In order to model the observability of both streams

and gaps, we need to generate mock observations of our
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Figure 1. Results from our simulations of a gap in a stream at RGC= 15 kpc. The total number of stars in each stream is
≈ 80,000 and the mass of the stream is 50,000 M�. Left : Gaps are induced by collisions with dark matter subhalos of masses
of 2 − 10 × 106 M�. Each stream is offset by a constant displacement in the y-direction for display purposes and the relative
velocity between the stream stars and the subhalo is 50 km/s. For comparison, we show an unperturbed stream of the same
mass and trajectory. Arrows indicate the location of the gap, and we label the mass of the perturber. Right : Linear density
of stars along the x-direction in each stream. In both plots, under-densities in perturbed streams can be identified by eye for
subhalos with masses ≥ 2×106 M�.

Table 1. Summary of simulation parameters for the stream and the
subhalo

Parameter Description Range of Values

Stream mp progenitor mass 5 × 104 M�

– number of particles ≈ 80,000

Subhalo Mh mass 2×106 M�–107 M�

rs scale radius 0.14 kpc–0.32 kpc

– potential Hernquista

Galaxy – potential Hernquist bulge +

Miyamoto-Nagai disk +

NFW halo b

aHernquist (1990).

b Profiles based on Miyamoto & Nagai (1975) and Navarro et al. (1996)
with parameters based on Milky Way measurements by McMillan
(2017).

streams in external galaxies as they will appear with Ro-

man, by taking into account sensitivity, resolution, and

contamination from Milky Way foreground and the host

galaxy halo background stellar populations. To address

contaminant populations, we followed a method similar

to Pearson et al. (2019) as applied to observations of the

halo of M31. In these simulations, we assumed all stars

are resolved down to our assumed magnitude limits.

3.1. Simulating Mock Observations with Roman

We obtained M31 data from the Pan-Andromeda Ar-

chaeological Survey (PAndAS, McConnachie et al. 2009;

Martin et al. 2016; McConnachie et al. 2018, Ibata

et al., private communication). The PAndAS survey

provides wide-field imaging data for the Milky Way,

M31 and other nearby galaxies over a total area of 300

deg2, with the 3.6-meter Canada-France-Hawaii Tele-

scope (CFHT) MegaPrime/MegaCam camera in the op-

tical and infrared u, g, r, i, and z filters. We used

extinction-corrected CFHT AB magnitudes (denoted by

g0 and i0) based on the corrections by Ibata et al.

(2014). We selected three patches with projected ar-

eas of 10 kpc × 10 kpc at the distance of M31 at ra-

dial separations of 15 kpc, 35 kpc, and 55 kpc from its
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Table 2. Summary of the stream, subhalo coordinates and resulting gap sizes

Parameter and Description RGC= 15 kpc RGC= 35 kpc RGC= 55 kpc

initial progenitor position at t1 ( ~x1, kpc) (6.1, 0.2, 14.7) (6.1, 0.2, 34.7) (6.1, 31.7, 44.7)

progenitor velocity at t1 (~v1, km/s) (-49.7, -119.4, -11.4) (-49.7, -119.4, -11.4) (-49.7, -119.4, -11.4)

total integration time (t1, Gyr) 2 3 3

collision | ~Vrel|, km/s 50 70 50

time before collision ( ∆t2, Gyr) 0.7 1.7 1.5

time during collision (∆t3, Gyr) 0.5 0.5 0.1

distance of impact from center (∆x, kpc) 0.5 0.7 0.8

result size of the gap (kpc) 1.4 1.8 1.8

center, corresponding to regions of ≈0.5 deg2 on the

sky. To generate mock Roman observations, we as-

sumed a total field of view of 0.28 deg2 (not simulat-

ing the shape of the detector) and limiting Vega mag-

nitudes of Z(F087) = 27.15 for 1000s exposures and

Z(F087) = 28.69 for 1-hour exposures.2 As in Pearson

et al. (2019), we limited our analysis to R(F062) and

Z(F087) bands.

3.1.1. Simulating Milky Way Foregrounds

We simulated foregrounds along the line of sight of

M31 assuming a central coordinate of R.A.= 0.57 deg

and decl.= 43.1 deg based on the central coordinates of

the M31 PAndAS field. We used a Kroupa power-law

initial mass function (IMF) (Kroupa 2001) for stellar

masses between 0.1 M� and 120 M�, isochrones from

the PAdova and tRieste Stellar Evolution Code (Bressan

et al. 2012, PARSEC) spanning ages of 4 Myr-13 Gyr,

and metallicities −2.0 ≤ [Fe/H] ≤ 0.2 that realistically

encompass the Milky Way thin and thick disks and halo

populations. We sampled 106 stars with masses from

the IMF, assigned ages and metallicities based on uni-

form distributions, and computed CFHT g0 and i0 and

Roman R and Z absolute magnitudes by interpolating

in initial mass–absolute magnitude space for every com-

bination of metallicity and age.

We assigned distances drawn from a galactic density

model composed of a thin disk, thick disk, and a halo

based on Jurić et al. (2008). The total stellar density is

given by:

ρ = ρthin disk + f0 × ρthick disk + f1 × ρhalo, (8)

where f0 and f1 are the relative fraction of thick disk

and halo stars to the thin disk population at the position

of the Sun, set to 0.12 and 0.005 respectively. Stellar

2 https://roman.ipac.caltech.edu/sims/Param db.html

densities for the disk were assumed to follow exponential

profiles parameterized by a scale height (H) and scale

length (L):

ρdisk = ρ� exp

(
−R−R�

L

)
exp

(
−|z − Z�|

H

)
(9)

For the thin disk, we assumed H = 300 pc and L =

2600 pc. For the thick disk, we assumed H = 900 pc

and L = 3600 pc. We also assumed R� = 8.3 kpc and

Z� = 0.027 kpc (Jurić et al. 2008). While the scale

height of a population varies with its main-sequence

lifetime (Bovy 2017), and dynamical evolution leads to

asymmetries in the density profile (Reylé et al. 2009;

Liu et al. 2017; Nitschai et al. 2021), these simple as-

sumptions provide a reasonable first-order estimate of

the broad stellar densities of present-day Milky Way

stellar populations. For the halo stellar density, we used

a flattened spheroid profile:

ρhalo =

(
R�

(R2 + (z/q)2)
1
2

)n

(10)

with q = 0.64 and n = 2.77. We drew distances from

a probability distribution function P (d) = d2 × ρ(R, z)

out to 100 kpc.

After we estimated the distance distribution of Milky

Way stars, we computed their observable apparent mag-

nitudes. To model the magnitude uncertainty, we fit

the magnitude dependence of the uncertainty (δmag)

for CFHT g0 and i0 filters based on the McConnachie

et al. (2018) point sources 3. We then assigned apparent

g0 and i0 magnitudes for the simulated population by

drawing from a normal distribution with a scatter equal

3 We selected point sources from the McConnachie et al. (2018)
catalog by restricting the morphology flags in the g and i bands
to -1. The catalog can be accessed at https://www.cadc-ccda.
hia-iha.nrc-cnrc.gc.ca/en/community/pandas/query.html

https://roman.ipac.caltech.edu/sims/Param_db.html
https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/community/pandas/query.html
https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/community/pandas/query.html
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to the standard deviation of the estimated dependence.

For all Roman magnitudes we assumed a constant un-

certainty of 0.1 mag; but the true uncertainty will likely

vary with magnitude and exposure time.

Finally, we determined the total number of stars that

are observable by Roman at a given magnitude limit by

scaling the simulated Milky Way foreground distribu-

tion to the observed PAndAS data within the region of

the color-magnitude diagram bound by 2 < g0 − i0 < 3

and 18 < i0 < 21. This region in the color-magnitude

diagram is predominantly covered by Milky Way fore-

ground isochrones, which makes it ideal for scaling our

total number of foreground stars. We then applied the

magnitude limit cut corresponding to 1 hour and 1000s

exposure. While this scaling does not take into account

exact selection effects, it provided a first-order estimate

for the number of stars that can be observed by Ro-

man. We obtained an agreement between our simula-

tions and both the color-magnitude diagrams and the fi-

nal g0-band luminosity function from the PAndAS data

in Figure 2; and we further discuss limitations in our

foreground and background simulations in Section 5.2.

3.1.2. Simulating Background Stars in M31 and Other
External Galaxies

We selected PARSEC isochrone tracks that span ages

of 5 Gyr to 13 Gyr and metallicities −2.0 ≤ [Fe/H] ≤
+0.5 to cover the approximate range of ages and metal-

licities of stars in the halo of M31 (Brown et al. 2003;

Ibata et al. 2014). Similar to the Milky Way simulation,

we assumed a Kroupa initial mass function for stellar

masses between 0.1 M� and 120 M�, a uniform age dis-

tribution, and a uniform metallicity distribution in cho-

sen patches of 10 kpc ×10 kpc at galactocentric radii

(RGC) of 15 kpc, 35 kpc and 55 kpc. The PAndAS

survey and other previous studies have characterized
the metallicity and abundance distributions (e.g. Es-

cala et al. 2020) of small regions of M31’s stellar halo in

detail. As our goal is to estimate stellar number densi-

ties, assuming a general set of old and metal-poor stellar

populations in all regions of the stellar halo was deemed

sufficient. Throughout, we assumed the distance to M31

to be 770 kpc (distance modulus of 24.4, Ibata et al.

2014).

To assign distances to stars in the halo of M31, we

modeled the stellar density as a flattened spheroid profile

based on Ibata et al. (2014). The 3D stellar density is

given by:

ρM31 =

(
(R̃2 + (z̃/q)2)

1
2

)n

(11)

(cf. Eqn. 10), where R̃ and z̃ are the cylindrical radius

and height starting from the center of M31, in the plane

and perpendicular to its disk respectively, with q = 1.11,

and n = −3. We drew distances assuming that the halo

of M31 extends to ≈ 100 kpc (Chapman et al. 2006)

and we assigned projected distances to M31 halo stars

as d = 770 kpc + z̃, where z̃ is the randomly-drawn

cylindrical galactocentric height for simplicity.

Finally, we assigned apparent magnitudes and magni-

tude uncertainties in a similar manner as for Milky Way

foreground stars. To obtain the correct normalization

for the number of stars, we scaled the total number of

stars to the observed number between 0.5 < g0 − i0 < 2

and 21.5 < i0 < 23.5 in the PAndAS data as there is

a significant drop-off in the PAndAS magnitude com-

pleteness to below ≈ 70% for i0, g0 > 23.5 (Martin et al.

2016). As a final check, we examined the simulated lu-

minosity function (number of stars as a function of mag-

nitude) in the CFHT g-band based on our CMD-based

scaling, luminosity function inferred from PAndAS data.

Figure 2 the combined CHFT g − band luminosity

function of both components (M31 population and the

Milky Way foregrounds) compared to the observed lu-

minosity function from the PAndAS data, and it shows

the simulated Roman color-magnitude diagram. This il-

lustrates that Milky Way foreground stellar populations

are dominated by sources with Z < 25, while M31 in-

cludes stars with Z > 20. In real Roman observations,

it will be possible to separate most Milky Way fore-

ground stars from M31 stars based on their positions

on the CMD (R − Z vs Z space, see Figure 2). We

note that low-mass stars and brown dwarfs are lacking

in our simulated foregrounds, hence they may introduce

an additional source of contamination in the real data.

Nevertheless, we found a general agreement between the

simulated and the observed luminosity function in the

CFHT bands. We further show a comparison between

our simulations and the PAndAS data in Appendix A.

While the region corresponding to the Milky Way disk

is reasonably well-matched, we could not reproduce all

of the structures in the CFHT CMDs, perhaps due to

an underestimation of the halo and thick disk fraction

along this line of sight.

To further validate our methodology for simulating

stellar populations, we compared our surface densities to

the CFHT data and predictions of Pearson et al. (2019).

For 1-hour exposure with Roman, we obtained stellar

densities of 3.1×105 stars/degrees2 at RGC= 55 kpc,

3.1×105 stars/degrees2 at RGC= 35 kpc and 2.9×106

stars/degrees2 at RGC= 15 kpc for the halo of M31.

These densities are ≈ 10 times higher than the densi-

ties obtained by Pearson et al. (2019) at the same ra-

dial distances and a similar Roman magnitude cut. We

note that our methods for estimating the foregrounds
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significantly deviate from the original methodology by

Pearson et al. (2019), by incorporating a stellar density

model and by scaling the stellar density to the brighter

regions of the CMD where the PAndAS survey is most

complete. In contrast, within the magnitude limits of

the PAndAS data (g0, i0 ≈ 26), our simulated densi-

ties of 2.0×104 stars/degrees2, 2.2×104 stars/degrees2

and 9×104 stars/degrees2 at RGC=55 kpc, 35 kpc, and

15 kpc, respectively, are in agreement with the observed

densities in PAndAS at the same galactocentric radii.

The agreement between our simulation and the observed

data validates our assumptions about the background

and foreground populations. We further discuss the lim-

itations of our simulations in Section 5.

3.1.3. Simulating Observed Stars in Pal 5

We simulated the stream population in a similar man-

ner to the backgrounds, but in this case, scaling to the

observed properties of Pal 5. We generated a sample of

106 stars assuming a power-law IMF (dN/dM ∝M−0.5,

Grillmair & Smith 2001; Ibata et al. 2017). We then as-

signed CFHT g and Roman R, Z absolute magnitudes

by interpolating the PARSEC isochrones for an age of

11.5 Gyr and [Fe/H]= −1.3. We applied a distance mod-

ulus corresponding to Pal 5 (dmod= 16.85; Pearson et al.

2019), and then determined a population normalization

factor by comparing the distribution of simulated CFHT

g magnitudes to the 3000 stars with 20≤ g ≤ 23 that

are known members of the Pal 5 stream (Bonaca et al.

2019). With this normalization factor, we computed the

number of stream stars detectable in a given host galaxy

based on the corresponding distance modulus and Ro-

man magnitude limit. Our number count predictions for

Pal 5 match the predictions of Pearson et al. (2019).

To generate a final simulated Roman image, we re-
sampled the simulated streams described in Section 2.3,

drawing only the expected number of detectable stars

for our Roman Z-band limits as a function of distance.

We also drew foreground and background stellar fields

at the same Z-band limits, the latter sampling the three

galactocentric radii from M31 PAndAS data, as well as

different host galaxy distances. For simplicity, the posi-

tions of background and foreground stars were assumed

to be uniformly distributed for a given 10 kpc by 10 kpc

patch. As most background halo stars are of similar stel-

lar populations as the stellar stream stars, the detection

of these streams and their gaps depends mostly on den-

sity contrasts. We, therefore, focus our analysis on star

count maps of these fields, rather than simulated im-

ages that incorporate brightness and instrumental point

spread function effects. Figure 3 shows examples of our

simulations of streams in M31. Henceforth, we will use

“mock observations” or “density maps” to describe the

results of our simulations.

3.2. Gap Identification by Visual Inspection of Density

Maps

We now turn to examining gaps and quantifying their

detection with distance and exposure times. Pearson

et al. (2019, 2022) developed methods for finding Pal 5-

like streams in Roman observations. Our primary goal is

to investigate the detection of gaps, assuming the stream

has already been identified. We present the visual in-

spection of gaps from simulated streams in M31 (Fig-

ure 3) and other external galaxies (Figure 4), centering

the density maps on the gap region. For simplicity, we

only considered gaps from interactions with subhalos of

5× 106 M� as this mass is in the appropriate range for

testing different dark matter models (Bullock & Boylan-

Kolchin 2017); and gaps that resulted from these in-

teractions are clearly visible in mock streams (Figure

1). In all of our simulated observations, we applied a

photometric metallicity constraint of [Fe/H]< −1, as

GC streams are typically metal-poor (e.g. Martin et al.

2022), allowing us to reduce the number of background

stars. In real Roman images, selecting low-metallicity

stars will require fitting the foreground populations of a

given galaxy to synthetic isochrones.

The angular lengths of Pal 5 streams for galaxies

within a ≈ 1.2 Mpc volume are larger than the field of

view of the Roman telescope; hence, only a portion of the

stream will fit inside a Roman field for these distances.

For an M31 distance of 770 kpc (dmod= 24.4, Ibata et al.

2014), the projected angular distance is 13.4 kpc/degree,

making the angular size of Pal 5-like streams in M31

(lengths of 7.8–12 kpc, Pearson et al. 2019) equal or

larger than the expected 0.52 degree × 0.52-degree Ro-

man field of view. Visually, the density contrast between

the stream and background stars increases with galac-

tocentric radius and with exposure time. Pearson et al.

(2019) estimated that the width of a Pal 5-like stream in

M31 would vary between 0.053 kpc–0.127 kpc at a galac-

tocentric radius (RGC) of 15 kpc–55 kpc, and the length

would vary between 7.8 kpc and 12 kpc. We could best

identify the gaps in the density maps for 1-hour expo-

sure, otherwise, visual identification of the stream and

gaps is difficult (see Figure 3).

To simulate streams in other external galaxies with

distances spanning 0.5 Mpc to 10 Mpc (assuming a sim-

ilar stellar composition and tidal field as M31), we offset

the M31 background population in the Roman CMD

space to the appropriate distance modulus, retaining
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Figure 2. Colors and magnitude distributions of our simulations compared to the data. (a): CFHT g0 mag luminosity
function based on the PAndAS data (blue filled-in histograms) and our simulations (black) for populations at RGC= 35 kpc.
The simulations are further divided into Milky Way foregrounds (light green) and M31 stars (orange). We are able to reproduce
the CFHT g-band luminosity function based on our scaling to the CFHT CMD ( more details in Appendix A) (b): Simulated
color-magnitude diagram for Roman R and Z bands at RGC= 35 kpc. CMD regions that are dominated by M31 stars or
Milky Way foregrounds are labeled in blue text. The horizontal dashed and solid lines show the magnitude cuts for 1000 s
and 1 hr exposures, respectively. With these magnitude cutoffs, the M31 halo population will be primarily dominated by
horizontal-branch stars and giants.

the same Milky Way foreground populations. The num-

ber of stars in Pal 5 was re-sampled to match the pre-

computed number of stars at the new galactic distance.

We applied the same magnitude cuts as our simulated

foreground and background models.

Figure 4 compares the simulated streams, all placed

at a fixed galactocentric distance of 35 kpc. We display

a fixed area in physical units of 7 kpc × 4 kpc in the

figure (7 kpc is ≈ half the length of the stream), which

corresponds to smaller angular scales in the total Roman

field of view at larger distances. We display the streams

at RGC= 35 kpc because the combination of the density

contrast and the thickness of the stream makes it easier

to visually detect the gap in these mock observations

compared to images at 15 kpc and 55 kpc. As the dis-

tance to the host galaxy is increased, the density of both

background stars and the stream decrease. We note that

the background stellar densities fall off faster than the

density inside the stream with galaxy distance, due to

the choice of isochrones and the metallicity cuts that we

are applied to the data. We caution that in real obser-

vations, other external galaxies will have different sizes,

and their halos will have a different composition com-

pared to M31. All these caveats are further discussed in

Section 5.

Through a visual inspection of streams with gaps in

host galaxies spanning a distance of 0.5 to 10 Mpc, we

find that the gap is visible by eye in external galaxies at

distances out to ≈ 1.5 Mpc (see Figure 4).

4. AUTOMATING THE DETECTION OF A GAP

Visual confirmation alone can result in biased assess-

ments of stream and gap detection, hence we now turn

to quantifying detection using an automated tool. In

Sections 4.1 and 4.2 we lay out methods for defining the

gap and the stream region, and in Sections 4.3, 4.4, and

4.5 we outline a procedure for quantifying the detection

of each gap and we provide a detection limit as a func-

tion of distance using a large sample of simulated mock

streams.

4.1. Density Estimation and Detecting Gaps

Previous studies have developed algorithms to find

and characterize stellar streams in the Milky Way (e.g.,

Mateu et al. 2017; Malhan & Ibata 2018; Shih et al.

2022, 2023) and in external galaxies (e.g., Hendel et al.

2019; Pearson et al. 2022). Once such algorithms have

determined a stream’s presence, location, extent, and

orientation, we can then search for gaps. We used the

gap-finding tool (Contardo et al. 2022, FindTheGap),

which is designed to evaluate under-densities in multi-

dimensional data. Gaps, just like streams, can be de-

tected by eye, but this tool provides an automated ap-

proach and serves as an additional method for confirma-

tion or rejection in conjunction with visual detection.
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Table 3. Summary of Simulations Parameters for Resolved Stellar Populations

Population Quantity Distribution Reference

Foregrounds & backgrounds IMF Kroupaa Kroupa (2001)

Milky Way Thin Disk age Uniform (0, 8) Gyr Jurić et al. (2008)

[Fe/H] Uniform (-1,0.5) Mackereth et al. (2019)

spatial density Exponentialb (H= 350 pc, L= 2600 pc) Jurić et al. (2008)

Milky Way Thick Disk age Uniform (8, 10) Gyr Kilic et al. (2017)

[Fe/H] Uniform (-1,0.5) Hawkins et al. (2015)

spatial density Exponential (H= 900 pc, L= 3600 pc) Jurić et al. (2008)

Milky Way Halo age Uniform (10, 13) Gyr Jofré & Weiss (2011)

[Fe/H] Uniform (-2.5, -1) Mackereth et al. (2019)

spatial density Spheroidc (n= 0.64, q= 2.77) Jurić et al. (2008)

M31 Halo age Uniform (5, 13) Gyr Ibata et al. (2014)

[Fe/H] Uniform (-2.5, 0.5) Ibata et al. (2014)

spatial density Spheroidd(n= 1.11, q= 3) Ibata et al. (2014)

Pal 5 age 11.5 Gyr Ibata et al. (2017)

[Fe/H] -1.3 Ibata et al. (2017)

IMF dN/dM= M−0.5 Grillmair & Smith (2001)

a dN/dM= M−α, with α = 1.3 for masses between 0.08 M� and 0.5 M�, α = 2.3 for masses > 0.5.

bExponential profile defined in Equation 9.

cSpheroidal profile defined in Equation 10.

dProfile given by Equation 11.

FindTheGap uses the projection of the second deriva-

tives (Hessian, H) of the density estimate onto the or-

thogonal subspace of the density gradient vector (g), de-

noted as ΠHΠ, where Π is a projection matrix defined

as:

Π = 1− ggT

gT g
(12)

The maximum eigenvalue of ΠHΠ can then be used

as a statistic to estimate if a point in the data space

is “in a gap”. Conversely, the minimum eigenvalue of

ΠHΠ can be used to highlight ridges and overdensities.

The density estimation depends on a free parameter, the

bandwidth, which relates the estimated density to the

spacing between data points. In addition to the band-

width, the stability of the gap detection also depends on

the number of data points.

To apply this tool to simulated observations, we

started with simulated density maps (Figures 3 and 4),

making a cutout centered on the visually-identified gap.

We did not use the full Roman field of view as the angu-

lar size of the stream becomes progressively smaller at

larger galaxy distances, making it more difficult to iden-

tify gaps. We then created a grid of 50 by 20 points along

each cutout with uniform spacing, covering an area of

5 kpc×2 kpc that includes the main track of the stream

and surrounding foreground and background stars.

The accuracy of this method relies on the choice of

bandwidth. Large bandwidths tended to smooth over

structures in the data, including the gap, but small

bandwidths introduced gaps and other small-scale struc-

tures that were not necessarily present in the underly-

ing true density. Additionally, the density estimation in

FindTheGap assigns lower densities to regions near the

edge of the simulated mock observations. To avoid these

edge effects, we first ran an estimation of the stellar den-

sity and the values of ΠHΠ on a slightly larger dataset,

incorporating stars beyond the specified grid. Specif-

ically, we required the data bounds to be larger than

grid bounds to a factor of twice the bandwidth. For ex-

ample, we used a 9 kpc by 6 kpc region for a bandwidth

of 1 kpc, given our fixed grid size of 5 kpc by 2 kpc. Af-

ter we fit the density estimator to the data, we predicted

the values of density and ΠHΠ on the smaller 5 kpc by

2 kpc grid (see Figure 5). To ensure the fidelity of each

gap detection and to remove spurious gaps, we ran this

estimation five times for every simulation, choosing the

same number of randomly selected stars for each esti-

mation (bootstrap re-sampling). In each iteration, the
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Figure 3. Simulated stellar density maps for a full Roman field of view of 0.28 deg2 with M31 background stars and Milky
Way foregrounds. The gap in the stellar stream is caused by an interaction with a subhalo with a mass of 5 × 106 M�,
and only a portion of the stream is shown here. The streams are injected at galactocentric distances of 15 kpc, 35 kpc and
55 kpc, and exposure times are 1000s (Z = 27.15, top panels) and 1 hr (Z = 28.69, bottom panels). We display these maps
in physical coordinates to highlight the scale of the gap, indicated by curly brackets.The projected x and y coordinates in kpc
were computed by assuming the distance to M31 is 770 kpc (an angular scale of 13.4 kpc/degree). We can visually see the gap
for 1-hour exposure, otherwise, it becomes more obscured by the background population.

density, and the minimum and maximum eigenvalues of

ΠHΠ were scaled to span values of 0 and 1 to main-

tain a consistent range across bootstrap samples. We

then computed the final ΠHΠ map by taking the me-

dian over all bootstraps. Figure 5 shows the result of

the application of this tool for simulated observations at

a distance of 1 Mpc. The map of ΠHΠ eigenvalues reli-

ably locates the gap and the stream. We further discuss

our determination of the optimal bandwidth in Section

4.4.

4.2. Further Outlining the Stream and Gap Regions

with Indicator Points

In principle, it is possible to determine the stream

path from the minimum eigenvalues of the ΠHΠ matrix

as the stream represents an overdensity. Nevertheless,

our focus was solely on the detection of gaps within a

stream. We constrained the stream region inside the

density maps by fitting a second-degree polynomial to
the pre-determined positions of the injected stream. To

define the stream track, we fixed the size of the stream

to be 0.2 kpc, which exceeds the real width of the stream

(visually and based on analytical calculations by Pear-

son et al. 2019). This is to ensure that there were enough

grid points to cover the full stream region. This step

also allows us to measure the density of stars inside the

stream, later discussed in Section 4.5. We note again

that our assumption is that the stream has been ob-

served, and the approximate stream region is therefore

known.

To outline the gap region, we selected points on the

grid falling within the top 95-percentile of the distribu-

tion of minimum eigenvalues of ΠHΠ. We will refer

to the regions on the grid that match this criterion as

“gap indicator points”. As shown in Figure 5, this crite-

rion provided a first-order estimation of the location of



12

Figure 4. Mock observations of streams with gaps in a segment of the full Roman field of view. To generate these mock
observations, streams were injected into pre-computed backgrounds. Stars are plotted with the same symbol size to facilitate
comparison at various galaxy distances. The sizes of the images are 7 kpc × 4 kpc (about half the length of the stream), which
would correspond to different angular sizes on the sky depending on the distance of the observed galaxy. The horizontal bar
shows the scale of 5 arcmin (or 1/6 of the 32 arcmin×32 arcmin full Roman field of view). We show the halo of the galaxy at
RGC = 35 kpc, assuming an exposure time of 1 hour (Z = 28.69) and a perturbation in the stream from 5× 106 M� subhalo.
We can see gaps to a distance of ≈ 1.5 Mpc.

the gap. We then further constrained the gap region to

be centered around the median position of gap indica-

tor points, with a width equal to the size of the stream

region and a length equal to the gap size (see Section

2.4). This definition of the gap region along with gap

indicator points was later used to develop metrics for

distinguishing successful detections from noise.

Figure 5 illustrates the gap detection procedure. As

all the mock observations were converted to physical

projected coordinates, this assumption yielded consis-

tent gap identification with galaxy distance. We further

discuss our quantification of the breakdown of the gap

identification procedure in the upcoming sections.

4.3. Defining Metrics for Gap Detections

We now turn to discuss our application of the gap de-

tection method on a sample of mock streams in an auto-

mated fashion. We created an automatic pipeline using

the methods described in Section 4.1 to search for gaps

in simulated mock streams, and two metrics to quan-

tify the detections. First, we computed ΠHΠ maps

and their eigenvalues for mock observations spanning

distances between 0.5 Mpc and 10 Mpc and using band-

widths between 0.1 kpc and 2 kpc for all three RGC val-

ues. We restricted the bandwidth range to 2 kpc as

the metrics discussed below did not improve beyond

this range. Ultimately bandwidths between 0.5 kpc and
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Figure 5. Illustration of the gap detection tool with a fixed bandwidth of 0.8 kpc applied to a stream at RGC =35 kpc and a
distance of ≈ 1 Mpc for a 1000 s exposure. Note that we assume all stars are resolved. Top Left: Black dots show the stream
and uniformly-distributed background stars in the vicinity of the stream. We used a fixed grid of 5 kpc by 2 kpc indicated
by black lines. Top Right: Contours show the stellar density which clearly shows an underdensity near the gap region and a
decrease in density towards the edge of the stream. The density estimation is applied over the full range of the data to avoid
edge effects at the end of the grid (see text for discussion). Bottom Left: Contours show a map of the maximum eigenvalues of
ΠHΠ , which are maximized near the gap. We used this map to indicate the location of the gap along the stream. Bottom Right:
Gap indicator points are shown in blue as defined to be where the maximum eigenvalues of ΠHΠ are in the top 95 percentile.
This procedure can locate underdensities inside the stream.

1 kpc were optimal in finding the gap region. For each

step, we repeated the generation of the stream, the gen-

eration of background populations, and the gap detec-

tion process to account for the scatter in the detection

metrics at low stellar densities. This process resulted in

81,795 independent mock observations.

We used three metrics to quantify the significance of

each detection. To quantify the uncertainty in the gap

detection, we defined the spread of all the gap indicator

points (Sg) as the range of their x-positions (max-min).

As a reminder, “gap indicator points” were defined as

points on the grid in the top 95 % of maximum eigenval-

ues of ΠHΠ. We anticipate that a robust gap detection

has low Sg values, as these gap points would be con-

centrated around one point near the stream (see blue

markers in the lower right panel of Figure 5).

We then computed the median value of the abso-

lute difference between the x-positions of gap indicator

points to the center of the density maps denoted by ∆,

computed for each stream separately. As we designed

each simulated observation to be centered around the

gap, we expect optimal detection to have a small value

for ∆. Nevertheless, we show in Appendix B.3, that

our pipeline can also identify gaps located away from

the center. After we defined Sg and ∆ per stream, we

used these metrics to determine which bandwidths were

optimal for detecting gaps.

4.4. Determining the Optimal Bandwidth

The effects of bandwidth choice on the gap detection

metrics as a function of distance are shown in Figure 6.

We found that bandwidths between 0.5 kpc and 1 kpc

resulted in the lowest values for the spread of gap in-

dicator points (Sg) and the deviation of the location of

the gap from the center of the density maps (∆). For

large bandwidths, the estimated density on the grid is

centrally concentrated and features are washed out. For

small bandwidths, the stellar density was fragmented

into small groups of spurious gaps, which also resulted

in large values for Sg and ∆. We illustrate these ef-

fects in Appendix B.2. We inferred a middle value of ≈
0.8 kpc as our optimal bandwidth.

To further evaluate the performance of the gap-

detection tool and to ensure that our pipeline was ro-

bust, we also applied the gap-finding tool to mock ob-

servations with an intact stream (without a gap from an

interaction with a subhalo) using our described method-

ology. As shown in Appendix B.3, we could identify

the drop off in density towards the edge of the stream,
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Figure 6. Distribution of detection metrics for a gap from a subhalo of mass equal to 5×106 M�. Left: Distribution of the
spread of gap indicator points (Sg) defined as the range (max-min) of their x-values. There is an island of best bandwidths
between 0.5 kpc and 1 kpc where this metric is the lowest, which defines our optimal set of bandwidths. Right: Map of the
median deviation of gap indicator points with respect to their true location (∆). The combination of ∆ and Sg values show
that the optimal bandwidth for locating the gap is between 0.5 kpc and 1 kpc.

but we could not identify any gaps inside the track of

the unperturbed stream for a bandwidths ranges of 0.5

to 0.9 kpc, further validating our method. In practice,

when applying this tool to real Roman images, the opti-

mal bandwidth may depend on the scale of underdensi-

ties in the backgrounds and a positive detection would

require further characterization. Our goal in this study

is to provide an additional methodology for detecting

gaps in conjunction with visual inspections. While our

pipeline could lead to false positives, it is unlikely to

miss any real gaps in the data.

4.5. Distance Limits for Gap Detections

To determine a tentative detection limit, we used both

the density of stars inside the gap region and the loca-

tion of the gap region as a reference. We estimated the

stellar density inside the stream and the gap by counting

the number of stars inside each region and dividing this

number by the physical area (in kpc2) (see Section 4.4

for the definition of the gap and stream points/regions).

To determine the area of the stream region, we multi-

plied the total area of the grid (10 kpc2) by the fraction

of grid points that fell within each respective region. Be-

cause the stream track did not follow a simple straight

line, this procedure allowed us to obtain a more accurate

measurement of each region’s area. For the gap region

and the background region, we approximated the area

as a rectangle. For the gap, we used a width equal to

the width of the stream, and the pre-computed length;

and for the backgrounds, we used a width of 0.5 kpc and

a length of 5 kpc.

Figure 7 shows the surface densities (number/kpc2)

inside the stream region, the gap, and the background

for a fixed optimal bandwidth of 0.8 kpc. There is a

monotonic decrease in the surface density inside the

stream, inside the gap, and in the background with in-

creasing galaxy distance, as expected. The stream den-

sity is generally higher than the gap density and the

background. Additionally, streams at smaller RGC val-

ues are denser than streams at larger RGC values. How-

ever, it was still difficult to determine the detection lim-

its from these densities alone.

To establish a tentative detection limit for our

pipeline, we examined the evolution of the gap location

with distance. We plot the median value of the location

of gap points (∆) for 5 random streams for each distance

step in the bottom panels in Figure 7. Our expectation

is that for robust detections of gaps, the central gap lo-

cation will remain stable across several iterations. While

there was a systematic offset between the center of the

stream from the true center, we observed this “flaring”

for the value of ∆ at larger distances. For both 1000 s

and 1 hour exposure times, this effect translates to dis-

tance limits of 2 Mpc–3 Mpc. In Appendix B.1, we show

examples of gap detections in mock streams at RGC=35

kpc which also indicates that the location of the gap in-

side the stream becomes progressively uncertain beyond

these distance limits.

To summarize, we used the tool (FindTheGap) devel-

oped by Contardo et al. (2022) to evaluate the detec-

tion of gaps beyond a simple visual inspection and to

quantify the distance limit with exposure time. We ap-

plied this tool to a set of > 80, 000 mock observations

for galaxy distances between 0.5–10 Mpc with M31-like

stellar populations as background stars. For each mock

observation, we defined “gap indicator points” based on
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Figure 7. Testing the stability of gap detections with distance using the optimal bandwidth of 0.8 kpc. First row: Variation
in the distribution of stellar densities inside the stream and the gap with distance. Gaps were created from subhalos of masses
of 5×106 M�. The density of stars in kpc−2 for the stream region is shown with solid lines, the gap is shown with dashed lines,
and the background is shown with dotted lines a 1000 s (left) and 1-hour exposure (right) for galactocentric radii of 15 kpc
(blue), 35 kpc (black) and 55 kpc (orange). As a general trend, the density inside the stream is higher than the gap, and the
background density but it is difficult to establish a detection limit from densities alone. Last 3 rows : Value of the absolute
difference between the x-positions of gap indicator points and the center of the density maps (∆) as a function of distance for
a 1000 s exposure (left) and 1-hour exposure (right). The color scheme follows the same pattern as the top panels. We defined
our gap-detection limits to be where the median value of ∆ starts to fluctuate, which corresponds to 2–3 Mpc.
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gap statistic provided by FindTheGap. The gap detec-

tion method relies on the bandwidth as an additional pa-

rameter to compute the density of stars on a pre-defined

grid. By changing this parameter uniformly between

0.1–2 kpc, we determined that the optimal bandwidth

for detecting gaps was ≈0.8 kpc. We then evaluated the

effectiveness of each detection by estimating the central

location of gap indicator points with galaxy distance.

Results from this procedure pipeline suggest that gaps

from subhalos of 5 × 106 M� in the halo of M31-like

galaxies will be detectable to 2–3 Mpc for exposure times

between 1000s and 1 hour.

5. DISCUSSION

In this Section, we revisit assumptions in our numeri-

cal simulations (Section 5.1), the observational limita-

tions (Section 5.2), their implications, and how they

affect our results. We also discuss future prospects of

using extragalactic streams for dark matter science (Sec-

tion 5.3).

5.1. Limitations in Our Simulation of a Gap

In our simulations, we have assumed that the galactic

potential is smooth and static. However, previous stud-

ies of the Milky Way have shown that inhomogeneities

in the global potential, including giant molecular clouds,

galactic bars, streams, other globular clusters, and spi-

ral arms can perturb GC streams (Amorisco et al. 2016;

Hattori et al. 2016; Price-Whelan et al. 2016; Erkal et al.

2017; Pearson et al. 2017; Banik & Bovy 2019; Doke &

Hattori 2022). To mitigate this effect, we can search for

streams located at large galactocentric radii in exter-

nal galaxies, and where the contrast between the stellar

stream and background is more dramatic (see Figure 3).

In addition, at large galactocentric radii, bars, spirals,

and molecular clouds are less likely to cause dynami-

cal perturbations in streams. Furthermore, with larger

sample sizes we will be able to determine the frequencies,

sizes, and locations of underdensities in streams, which

gives us the ability to statistically evaluate signatures of

perturbations from dark matter subhalos.

Global potentials in galaxies are also deformed by

mergers and satellite interactions (Weinberg 1998;

Garavito-Camargo et al. 2019), and observations sug-

gest that M31, in particular, has been largely shaped

by a possibly recent minor (or major) merger (D’Souza

& Bell 2018; Escala et al. 2021; Dey et al. 2022; Bhat-

tacharya et al. 2023). Merger events and interactions

with satellites can distort present streams (Erkal et al.

2019; Shipp et al. 2021; Lilleengen et al. 2023) and con-

tribute to the accretion of new globular clusters that will

eventually form streams (Kruijssen et al. 2020). The de-

tails of the formation and disruption of GC streams have

not been extensively explored in large cosmological sim-

ulations.

Throughout this work, we have only considered one

encounter between the stream and the subhalo. Old

GC streams can undergo multiple collisions with sub-

halos, creating multiple observable density fluctuations

and perturbations to the stream morphologies. In fact,

multiple under-densities have been observed in several

Milky Way streams such as GD-1, (Bonaca & Hogg

2018) and Pal 5 (Erkal et al. 2017). We do not further

explore the effects of multiple encounters here, but based

on our analysis of the detectability of a gap from a single

subhalo encounter, we expect that streams, which have

undergone multiple interactions with subhalos to have

multiple observable gaps that can be detected using our

methodology. Using realistic galaxy simulations that in-

clude baryonic physics, Barry et al. (2023) predicts that

Pal-5-like streams in the Milky Way could undergo 2-

3 interactions/Gyr with subhalos of masses > 106 M�
before dissolution.

In our analysis, we limited our investigation of the

observability of gaps with Roman to subhalo encoun-

ters between GC streams and dark matter subhalos with

Hernquist profiles (Hernquist 1990). Cuspier profiles for

the dark matter subhalo can result in larger gaps for the

same encounter properties (Sanders et al. 2016). Addi-

tionally, as gaps grow with time, the initial size and the

growth of gaps will depend on the collision parameters,

such as the mass and scale radius of the subhalo, the

relative velocities of the subhalos to the stream, the im-

pact parameter, the stream orbit, the time of the colli-

sion, the impact position, and others. These parameters

have been extensively explored in numerical and analyt-

ical work (Yoon et al. 2011; Erkal & Belokurov 2015;

Sanders et al. 2016; Koppelman & Helmi 2021). In ex-

ternal galaxies, these effects will be difficult to disentan-
gle given the lack of kinematic information. However,

large statistical sample sizes of observed gaps will al-

low for rigorous comparisons to predictions of gaps in

streams evolved within various dark matter frameworks

(e.g., warm, fuzzy, self-interacting).

5.2. Limitations in Our Simulation of Mock

Observations

In this work, we have generated mock Roman obser-

vations to mimic stellar halos of external galaxies at

various distances without accounting for observational

biases due to crowding, extinction, or star/galaxy sep-

aration. Pearson et al. (2019) discussed several of the

limitations and considerations to take into account for

such mock observations. In particular, they concluded

that crowding effects will not affect the detection of thin
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GC streams in external galaxies with Roman. We can

further minimize crowding effects by observing external

galaxies with sight-lines pointing away from the Milky

Way’s galactic plane. Our method relies on estimat-

ing the underlying density of stars, thus measuring the

density contrast between stream stars and background

stars is the determining factor in the success of gap de-

tections. Additionally, the effect of dust extinction will

be minimal for the halo of M31 at infrared wavelengths

(Dalcanton et al. 2015).

In addition, Pearson et al. (2019) evaluated the feasi-

bility of star/galaxy separation detection on the detec-

tion limits of GC streams with Roman. They used the

Space Telescope Image Product Simulator (STIPS) to

inject known galaxy catalogs into simulated fields and

applied quality cuts based on source shape. They con-

cluded that including background galaxies would limit

the detection of Pal 5 in M31-like galaxies to 1.1 Mpc–

1.8 Mpc for an exposure time of 1 hour. There are ≈115

galaxies in this volume based on Karachentsev & Kaisina

(2019), and gaps will be detectable to these distances

based on the methodology presented in this work. As-

suming “perfect” star/galaxy separation and investigat-

ing GC streams with 5 − 10 times more massive than

Pal 5, they estimated that thin GC streams could be

detected in host galaxies out to 6.2 − 7.8 Mpc with a

1-hour Roman exposure. This volume contains ≈ 660

galaxies (Karachentsev & Kaisina 2019), with 25 galax-

ies that are 10% more luminous than the Milky Way;

and the vast majority of galaxies within the 7.8 Mpc

limit are dwarf galaxies. While we did not include such

an analysis in this paper, we expect the feasibility of

star/galaxy separation to have a similar effect as the pre-

dictions by Pearson et al. (2019) on the detection of gaps

as the detection of streams because background galaxies

will be randomly spread out throughout the image. We

note that the formation of GC streams in dwarf galax-

ies has been explored in simulations (e.g. Peñarrubia

et al. 2009), but more work is needed to estimate their

observability.

Finally, future large observing programs dedicated to

searching for gaps in streams in external galaxies can

extend to longer exposure times, which would allow

for larger sample sizes and potential detection of GC

streams in dwarf galaxies. Optimistically, it is likely

that a full program that is dedicated to observing these

gaps with Roman would extend over several hours of

observing time, allowing the stacking of images from

multiple visits to reach depths beyond our estimates.

5.3. Inference of Dark Matter Properties and Expected

Sample Sizes

Our focus throughout this paper has been on the

detectability of underdensities in extragalactic GC

streams. Previous studies have explored pathways to

isolate dark matter effects from baryonic effects and to

infer dark matter properties (e.g. particle mass) from

observations of gaps in streams. Using linear perturba-

tion techniques, Bovy et al. (2017) constrained the num-

ber of dark matter subhalos of masses between 106.5 and

109 M� within 20 kpc of the Milky Way’s galactic cen-

ter by modeling Pal 5 data (see also Banik et al. 2021).

Banik & Bovy (2019) provided a powerful method for

disentangling underdensities caused by dark matter sub-

halos from baryonic perturbers (e.g. bars, molecular

clouds, and spiral arms) in Pal 5 by computing the var-

ious perturbers’ contributions to the stream’s density

power spectrum. They concluded that the contribution

from spiral structure to Pal 5 substructure is low but

that giant molecular clouds can create small-scale under-

densities comparable to those from dark matter subhalos

(Amorisco et al. 2016). Recently, Hermans et al. (2021)

showed that simulation-based inference techniques with

machine learning that map observed densities in streams

to simulations can help constrain dark matter structure.

They found that GD-1 stream data can be used to con-

strain warm dark matter particle masses and distinguish

between CDM and WDM models. Lovell et al. (2021)

confirmed that the structure in GD-1 and Pal 5 can place

limits on the fraction of WDM vs CDM subhalos within

a 40 kpc distance from the Galactic center (see also dis-

cussion by Pearson et al. 2019, 2022). Searching for

streams in the halos of external galaxies far from the

bar and star-forming regions will increase the likelihood

of finding gaps induced by gravitational perturbations

from dark matter substructure, which can be compared

to expectations from various dark matter candidates.

Even though we have shown that Roman will not be

able to detect gaps in GC streams in external galax-

ies further than 2–3 Mpc away, in M31 alone there

are ≈ 450 GCs (Galleti et al. 2006, 2007; Huxor et al.

2008, 2014; Caldwell & Romanowsky 2016; Mackey et al.

2019), which is a factor of 3 more than the number of

known GCs in the Milky Way (Harris 1996, 2010). It

is not unreasonable to assume that there is also a fac-

tor of 3 more, yet to be detected, GC streams in M31

than the ≈ 100 GC streams observed in the Milky Way

(Malhan et al. 2018; Mateu 2023; Martin et al. 2022)

We know that GCs are also prevalent in other exter-

nal galaxies (Harris et al. 2013). Thus, M31 and other

galaxies could provide a diverse set of GC streams with

gaps that can be used to constrain substructure within

various frameworks of dark matter (Bovy et al. 2017).
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While the full survey parameters of Roman is yet to

be determined, the proposed high latitude survey (HLS)

is expected to image high-latitude fields (Akeson et al.

2019). The WFI instrument can reach depths of ≈ 28

mag (AB) in R,Z, Y bands for exposure times of 1 hour.

Furthermore, the instrument has slitless spectroscopic

capabilities that cover (0.6 µm-1.8 µm), which will be

beneficial in identifying resolved stellar populations, al-

beit at much shallower 1-hour sensitivity. Compared to

previous M31 surveys with HST (e.g. the Panchromatic

Hubble Andromeda Treasury Dalcanton et al. 2012), Ro-

man will offer an opportunity to observe M31 at higher

efficiency and sensitivity.

Finally, in addition to the Nancy Grace Roman Tele-

scope, other imaging and astrometric surveys, such as

the Vera C. Rubin Observatory, will also help detect new

gaps from dark matter subhalos down to ≈106 M� in

dozens of streams in the Milky Way (Drlica-Wagner

et al. 2019). These detections will offer the possibility to

constrain cold dark matter models at a 99 % confidence

level, opening up an exciting era for using both Galac-

tic and extra-galactic streams to constrain dark matter

models.

6. SUMMARY

Our aim was to quantify the detection prospects of

gaps in globular cluster streams in external galaxies with

the Nancy Grace Roman telescope. To do this, we simu-

lated mock Roman observations of gaps in extra-galactic

Pal 5-like streams produced by their interaction with

dark matter subhalos. We generated mock streams and

we simulated a direct encounter with dark matter sub-

halos with masses between 2×106M� and 107M�. Ad-

ditionally, we simulated realistic mock observations of

background of stars in the halo of M31 at galactocen-

tric radii of 15 kpc, 35 kpc and 55 kpc, taking into ac-

count contamination from Milky Way foregrounds. To

mimic observations of galaxies at distances that are fur-

ther than M31, we moved the simulated M31 population

to distances of 0.5–10 Mpc, retaining foreground Milky

Way populations. To search for gaps in the stream, we

first visually inspected mock observations, then applied

an analysis with the gap detection tool from Contardo

et al. (2022), deriving several metrics to quantify the

reliability of our detections with galaxy distance.

We summarize our findings as follows:

• We find that gaps formed by 5×106 M� subhalos

gaps will be visually obvious in 1000 s and 1-hour

photometric exposures in the halo of M31.

• Mock observations of the same stream at various

distances from the Milky Way indicate that gaps

can be seen out to distances of ≈1.5 Mpc by visual

inspection.

• With the automated detection tool, we confirmed

that gaps formed from 5×106 M� subhalos can be

identified to distances of 2–3 Mpc, a volume which

includes ≈ 200 galaxies.

While our analysis was limited to gaps from in Pal 5-

like streams embedded in M31-like halos, it points to the

potential of Roman to build a large and diverse set of GC

stream gaps in multiple galaxies, which will contribute

to constraining various dark matter models.
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Figure 8. Comparison between simulated stellar populations and the PAndAS data. Left: Color-magnitude diagram of the
CFHT data from the PAndAS survey covering distances 30–40 kpc from the center of M31. We used the regions shown by the
dashed rectangles to scale the number of the Milky Way foreground stars, and the regions shown in solid rectangles to scale the
total number of stars in our simulations. Right: Similar to the left but here, we show the simulated populations. Our simulated
CMD reasonably matches the PAndAS observations.

A. COMPARING SIMULATED POPULATIONS TO PANDAS DATA

In Figure 8, we show the simulated color-magnitude diagram in CFHT g0 and i0 bands compared to the reddening-

corrected PAndAS data, which reproduces a significant portion of the range of colors and magnitudes covered by the

data. We also show the regions of the CMD that were used to scale the simulation to the data. While our simulations

are a reasonable match to the data, we did not reproduce overdensities at g0− i0 ≈ 1 and i0 > 22 which were labeled as

Milky Way halo stars by Ibata et al. (2014), pointing to perhaps an underestimation of the fraction of Milky Way disk

to halo stars in our simulations. Additionally, our simulations assume magnitude completeness down to the magnitude

limits, which is not the case for the real data. As reported by Martin et al. (2016), the completeness of the PAndAS

survey drops below 70 percent for i0 > 23. Nevertheless, as discussed in the main text, this scaling provided a robust

estimation of the CFHT g-band luminosity function and the total stellar density within the PAndAS fields.

B. ADDITIONAL CHECKS FOR GAP DETECTION PIPELINE

B.1. Visual Inspections of Gap Detections with Distance

Figure 9 shows additional examples of the density of stars in mock observations as a function of distance, and the

identification of the gap. Here, we only show streams at RGC= 35 kpc and 1 hour exposure time as the gaps are easier

to detect (see discussion of Figure 7). The location of the gap is shown by arrows which become scattered beyond

2–3 Mpc, which indicates our detection limit.

B.2. Examples of Non-Detections of Gaps

We demonstrate where the detection of gap breaks down for a set of mock observations RGC= 35 kpc and for 1 hour

exposure times by showing three cases in Figure 10: (a) a case where the gap was detectable by eye but the bandwidth

was much larger than our optimal bandwidth (b) a case where the bandwidth was much smaller than 0.8 kpc, and (c)

a case where the bandwidth was optimal but the stellar density in the stream was low. For the first case and second

cases, the spread in the location of gap points (Sg) was large. In the last case, the deviation of gap points (∆) from

the center was large.
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Figure 9. Additional simulation of a gap from a 5×106M� subhalo at various distances of the host galaxy and for RGC=35 kpc.
Each panel is a composite of 10 mock observations, and all panels are centered around the gap. Contours show the distribution
of the top 95 of the maximum eigenvalues of ΠHΠvalues based on our density estimator with a bandwidth of 0.8 kpc. Simulated
stars are shown as black points. Vertical arrows show the center gap area based on our pipeline for each iteration. Successful
identifications of gaps were characterized by a centrally-located gap. Our method successfully identified gaps when the density
of stars inside the stream was relatively high (distances ≈ 2−3 Mpc). We discuss our characterization of potential failure modes
of our pipeline in Appendix B.2.
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(a)

(b)

(c)

Figure 10. Illustration of different modes of failures for our detection pipeline. All images are for 1 hour exposures. In the
left panels, we show the simulations. In the center panels, filled-in contours show the map of the density and the maximum
eigenvalues of ΠHΠ that we used to locate gaps. In the right panels, we show gap indicator points based on our percentile
cuts. (a) Simulation of a stream at a distance of 0.8 Mpc using a large bandwidth of 1.5 kpc. The stream can still be identified,
but the method could not detect the central gap. Using our pipeline selection metrics, this detection would be rejected on the
basis that the spread in the location of gap points is large and that the absolute deviation of the predicted gap location from
the center is large, consistent with our ∆ metric (see Section 4.4). (b) Simulation of a stream at a distance of 0.8 Mpc using a
bandwidth of 0.1 kpc. In this case, the predicted median location of gap points is close to the true location of the gap, but there
are also spurious gaps in the background. Using our metrics defined in Section 4.4, this detection would have a small value for
∆, but a large value for Sg. (c) Simulation of a stream at 6.5 Mpc with a bandwidth of 0.8 kpc. Due to the very low density
in the image, the gap-finder tool detects an off-centered gap but it does not detect the real gap. This outcome motivates our
claim that the gap detection pipeline works for distances < 3 Mpc.

B.3. Comparing Streams with Gaps to Intact Streams and Backgrounds

We compare the performance of the gap detection tool to simulations of an intact stream with no perturbation

from the dark matter subhalo for a bandwidth of 0.5 kpc and 0.8 kpc, and a stream with an off-centered gap with a

bandwidth of 0.8 kpc in Figure 11. To generate mock observations, we followed the same methodology as highlighted
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(a)

(b)

(c)

Figure 11. Additional tests of the gap detection tool on intact streams for a bandwidth of 0.5 kpc (a) and a bandwidth of
0.8 kpc (b). We also show a stream with off-centered gap (c), as an additional validation that our pipeline does not depend on
the position of the gap. All simulated streams are at 1 Mpc at RGC= 35 kpc, for 1000 s exposure.

in the main text. Spurious gaps were persistent in the backgrounds, but these detections can be ruled out by careful

visual inspection. Additionally, the tool is able to detect off-centered gaps.
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Hawkins, K., Jofré, P., Masseron, T., & Gilmore, G. 2015,

MNRAS, 453, 758, doi: 10.1093/mnras/stv1586

Helmi, A., & White, S. D. M. 1999, MNRAS, 307, 495,

doi: 10.1046/j.1365-8711.1999.02616.x

Hendel, D., Johnston, K. V., Patra, R. K., & Sen, B. 2019,

MNRAS, 486, 3604, doi: 10.1093/mnras/stz1107

Hermans, J., Banik, N., Weniger, C., Bertone, G., &

Louppe, G. 2021, MNRAS, 507, 1999,

doi: 10.1093/mnras/stab2181

Hernquist, L. 1990, ApJ, 356, 359, doi: 10.1086/168845

Hezaveh, Y., Dalal, N., Holder, G., et al. 2016, JCAP, 2016,

048, doi: 10.1088/1475-7516/2016/11/048

Hu, W., Barkana, R., & Gruzinov, A. 2000, PhRvL, 85,

1158, doi: 10.1103/PhysRevLett.85.1158

Hui, L., Ostriker, J. P., Tremaine, S., & Witten, E. 2017,

PhRvD, 95, 043541, doi: 10.1103/PhysRevD.95.043541

Hunter, J. D. 2007, Computing in Science Engineering, 9,

90, doi: 10.1109/MCSE.2007.55

Huxor, A. P., Tanvir, N. R., Ferguson, A. M. N., et al.

2008, MNRAS, 385, 1989,

doi: 10.1111/j.1365-2966.2008.12882.x

Huxor, A. P., Mackey, A. D., Ferguson, A. M. N., et al.

2014, MNRAS, 442, 2165, doi: 10.1093/mnras/stu771

Ibata, R. A., Lewis, G. F., Thomas, G., Martin, N. F., &

Chapman, S. 2017, ApJ, 842, 120,

doi: 10.3847/1538-4357/aa7514

Ibata, R. A., Malhan, K., & Martin, N. F. 2019, ApJ, 872,

152, doi: 10.3847/1538-4357/ab0080

Ibata, R. A., Lewis, G. F., McConnachie, A. W., et al.

2014, ApJ, 780, 128, doi: 10.1088/0004-637X/780/2/128
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